We have consolidated all of our University news sources into one location called BingUNews. Inside stories published through 2016 will remain available here. Stories published in 2017 and later will be found at BingUNews. Enjoy!
Stephen Levy, assistant professor of physics, applied physics and astronomy, works with students Alexander Klepinger and Madeline Greenier in his Science 2 laboratory. Levy has received a $500,000 grant from the National Science Foundation's CAREER program.
Photo by Jonathan Cohen
Physicist receives prestigious NSF grant
August 28, 2014
A 黑料视频 physicist鈥檚 experiments may one day lead to sophisticated sensors that are able to detect small amounts of dangerous materials rapidly.
A new $500,000 grant from the National Science Foundation鈥檚 prestigious Faculty Early Career Development (CAREER) Program will enable Stephen Levy, assistant professor of physics, to study how DNA travels through carbon nanotubes.
鈥淵ou can picture it like spaghetti being sucked through a straw,鈥 he said.
A nanotube is a cylinder made from a sheet of carbon that鈥檚 just one atom thick. Fluids travel through these tiny tubes differently than they do through a large pipe, though scientists don鈥檛 know exactly why. Some experts hope that nanotubes will lead to a next-generation method of sequencing DNA. Nanotubes may also help scientists understand some aspects of how small molecules are transported into cells.
Levy has developed a way to study one carbon nanotube at a time. Other labs study thousands at once, or use electrical observations of how DNA moves through nanotubes. Levy鈥檚 team has developed a way to conduct electrical, optical and fluorescent observations of single-stranded DNA molecules at the same time. His lab has also pioneered a fabrication technique that makes it possible to integrate carbon nanotubes within small fluidic channels.
Levy, who received a bachelor鈥檚 degree from the University of Richmond, earned a doctorate from the University of California Santa Barbara, where he did graduate work at the Stanford Linear Accelerator Center. He also did a post-doctoral stint with the University of Chicago at the Fermi National Accelerator Laboratory. After that, Levy essentially switched fields, leaving particle physics behind and studying biophysics for four years at Cornell University before joining Binghamton鈥檚 faculty in 2010.
Today Levy draws on principles from physics, biology, chemistry and materials science in his research. He鈥檚 particularly interested in how DNA, the genetic material found in nearly all living things, travels through these nanotubes. The information in DNA can be thought of as a code of four chemical bases. These four bases pair up in different combinations. Some combinations 鈥 or 鈥渕arkers鈥 鈥 are unique to certain animals or molecules and can be used to identify them.
Levy鈥檚 research could enable the electrical detection of particular molecules. For instance, a sensor at a post office could be programmed to search for a specific DNA marker.
鈥淚f you can read where that marker is, it鈥檚 almost like a bar code,鈥 Levy said. 鈥淵ou don鈥檛 want to sequence every piece of schmutz that goes through there because it takes a long time and it鈥檚 fairly expensive. But if you have a quick way of identifying a dangerous molecule, that鈥檚 valuable.鈥