Lean Six Sigma Green Belt

Lean Six Sigma Green Belt  (self-paced, online)

Next Course Offering: December 18, 2024-January 22, 2025

Registration Deadline: December 27, 2024

The Green Belt course will provide a deeper understanding of Lean and Six Sigma tools within the context of the DMAIC methodology. This training enables participants to analyze and solve quality-related issues and teaches how to achieve process excellence through continuous improvement. For more background on LSS click here

Delivery format: This is an online, self-paced course with twelve, 90-minute video lectures and an extensive take-home exam (which takes about 30-40 hours to complete). A Statistics refresher is available and those who register for the Statistics refresher will get access to the statistics course materials 2 weeks before the Green Belt course starts.

Instructor: Mohammad Khasawneh

Credentials: At successful completion you will earn the Green Belt Certification and the Lean Six sigma Green Belt badge will be issued. A ºÚÁÏÊÓƵ issued course completion certificate is also available for successful participants. A grade of 70% or higher is required to pass the course an earn the certification and badge.

Who can take this course: This course has no prerequisites although knowledge/experience/education in probability & statistics is required. Students without this background are strongly encouraged to consider the statistics refresher. This course is intended for all engineers as well as non-engineers, professionals, faculty and students and is appropriate for both technical and non-technical audiences. The Green Belt certification or similar training is a pre-requisite for the Black Belt certification.

Registration deadlines:

  • NOTE: Please be aware that after you register it can take 1-5 days for you to be enrolled in the course if you are an external (non-BU) registrant. If it should happen that you are enrolled in the course late we can make it up to you by giving you additional time to complete the course. 

ABOUT THE COURSE

This course is offered by the Systems Science and Industrial Engineering (SSIE) Department at ºÚÁÏÊÓƵ.  Pre-requisite statistics instruction is also offered. This course includes: 

  • Twelve 90-minute pre-recorded lectures and includes soft copies of presentation slides. (A prerequisite statistics day of instruction which is comprised of four additional 90-minute pre-recorded lectures is available to those without experience with probability, statistics and/or quality control.)
  • A take-home examination with a 70-percent minimum passing grade within 4 weeks of the start of the course.
  • Support via access to virtual office hours and email contacts to the professor and teaching assistant
  • An open-book take-home exam will be distributed by the end of the first week of the course.
  • Allot 30-40 hours for completing the exam.
  • Exam will be due by January 22, 2025, at 11:59 p.m.
  •  A Micro-credential in the form of a Lean Six Sigma Green Belt digital badge and Green Belt Certificate will be provided to those who successfully complete the course.

Open to

  • Current Binghamton and non-Binghamton students
  • Binghamton alumni
  • Members of industry, non-profit, and government agencies 

Requirements

  • Knowledge/experience/education in probability & statistics is required.  Students without this background are strongly encouraged to consider the statistics refresher.
  • Binghamton students: Some examples of courses that fulfill this prerequisite include ISE 261, ISE 362, SSIE 505, and CSQ 112.
  • Computer with a high-speed internet connection and audio. Microsoft Excel is also required.
  • A trial version (free for 30 days) of the  (for statistical analysis) at the start of the training program. Minitab is  for all Binghamton students.
  • Headset with a microphone may be useful but not necessary.

Statistics Refresher: Four 90-minute lectures

For those who do not have prerequisite coursework in statistics

  • Session 1 - Course Introduction, Course Outline, Fundamental of Problem Solving, Introduction to Statistics, Sampling Process, Introduction to Minitab
  • Session 2 - Basic Statistics: Measures of Location, Measures of Variability, Data Visualization, Coefficient of Variation, Dot Plot, Histogram, Stem And Leaf, Box Plot
  • Session 3 - Basic Statistics: Random Distribution, Variables Types, T-test, Z test, Statistical Tables, Confidence Intervals for Mean, Confidence Interval for Proportions, Confidence Interval for Standard Deviation
  • Session 4 - Advanced Statistics: Compare Means, Compare Variances, Compare Proportions, Rejection Region, Fail to Reject, Type 1 error and Type 2 error, Power and Sample Size, P-value

Green Belt: Twelve 90-minute lectures

Several case studies and applications of lean six sigma concepts will be presented throughout the course. 

  • Continuous process improvement (CPI) with emphasis on both lean and six sigma concepts and methodologies
  • Lean concepts and their applications, such as 5s, waste reduction, value stream mapping, and error proofing
  • DMAIC (Define, Measure, Analyze, Improve, and Control) to solve issues and transition CPI projects from one phase to another
  • Basic statistical analysis methods, tools, and control charts used to determine key relationships between inputs and outputs
  • The integration of both lean and six sigma for achieving data-driven process improvement results
  • Team dynamics and leadership to provide effectively successful projects.

Course Outline

  • Session 1 - Course Introduction, Meet the Instructor, Training Objectives, Training Outline, Fundamental Concepts, Flow Charts, Process Maps
  • Session 2 - Pareto Charts, Cause, and Effect Diagram or Fishbone (Ishikawa), Optimizing Process Flow, Bottle Necks, Forecasting Demand
  • Session 3 - Capacity, Wait Times, Continuous Improvement, Kaizen, Deming, PDSA Cycle, Quality Circles, Quality Certifications and Awards - ISO 9000 and Malcolm Baldrige, Statistical Process Control
  • Session 4 - Lean, Six Sigma, TPS, Value Added vs. Non-Value Added, 7 Wastes/Muda (TIM WOOD), Production Systems (Craft, Mass, Lean), Lean Tools, House of Lean, Push/Pull, Visual Control, Kanban
  • Session 5 - Time & Motion, Takt Time, Throughput, Value-Added Time, Heijunka (Leveling), Standardized Work, Jikoda & Andon, Mistake Proofing (Poke-Yoke), SMED, 5Ss
  • Session 6 - Spaghetti Diagram, Value Stream Mapping, SIPOC, Projects, and Case Studies, Intro to Six Sigma
  • Session 7 - Six Sigma, Lean Six Sigma, Kaizen Event, Six Sigma Model, Key Players in Six Sigma Program – Role and Responsibilities, DMAIC, Project Management, Decision Criteria, and Decision Matrix
  • Session 8 - Project Scoping, Project Charter, Project Planning, 7 Basic Quality Tools, 7 New Quality Tools, Critical to Quality, Data Collection
  • Session 9 - Data Collection Methods, Sampling Methods, Basic Statistics, Measurement System Analysis, Gauge R&R
  • Session 10 - Process Capability, Benchmarking, Correlation Coefficient, Regression Analysis
  • Session 11 - Hypothesis Testing, Design of Experiment, ANOVA
  • Session 12 - FMEA, House of Quality, Quality Function Deployment, Control Charts: X-bar Chart, R Chart, Process Control Plan, Case Studies on DMAIC

Instructor

Dr. Khasawnweh

Mohammad T. Khasawneh

  • Professor and Chair in Systems Science & Industrial Engineering Department
  • Associate Director, Watson Institute for Systems Excellence
  • Director, Healthcare Systems Engineering Center
  • Director, Human Factors and Ergonomics Laboratory
  • Graduate Program Director, Executive Master of Science in Health Systems
  • SUNY Chancellor's Award for Excellence in Teaching
  • PhD, Industrial Engineering, Clemson University

Teaching Assistant

rahaf matahen, teaching assistant

Rahaf Matahen

  • Master’s student in Industrial and Systems Engineering
  • BS, Industrial Engineering, Applied Science University

Fees & Deadlines

Group pricing may be available upon request. 

We reserve the right to cancel our sessions.  

If canceled, fees will be refunded in full.

Please note the registration deadlines.

 

Green Belt Course Only 
(Twelve 90-minute Lectures)

Statistics Refresher+Green Belt Course 
(Sixteen 90-minute Lectures)

 

Standard/Industry

$850

$950

 

Government/Binghamton Alumni, staff & faculty

Binghamton Alumni (graduated in December 2022 or prior)

$650 $750

 

Current Binghamton students
and Recent Binghamton Alumni (Graduated after December 2023)

$350

$450

Non-Binghamton students

Please email proof that you are a matriculated student at a University (a screenshot of class schedule/ transcript will work)

Email to: wtsnindy@binghamton.edu

$450 $550
 

Registration

Registration confirmations will be sent by email. Detailed instructions about accessing the course are included in the email.

If you have not received confirmation within seven days of registering, please contact the Office of Industrial Outreach to make sure we received your registration.

Contact information:

Office of Industrial Outreach:
Kodylynn Perkins SPIR Staff Assistant), wtsnindy@binghamton.edu, (607) 777-6251
Mike Testani (Director of Industrial Outreach) wtsnindy@binghamton.edu, (607) 777-6243
 

Cancellation and Refund Policy

  • All cancellations must be received in writing (email, fax, or letter).
  • No refunds for cancellations or non-attendance after Dec. 16th at 5 pm.
  • Refunds are not issued after Dec. 16th at 5 pm. Substitutions may be made anytime before the beginning of the course by informing the Office of Industrial Outreach.
  • If the course is canceled, enrollees will be advised and receive a full refund.
Deadline for refund

 

December 16, 2024, 5 p.m. 

Administrative Fee $20